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1. Introduction 20 

Males and females have been consistently reported to differ on aspects of emotional 21 

memory (Buck et al., 1974; Fujita et al., 1991; Hall and Matsumoto, 2004; Kring and Gordon, 22 

1998; Seidlitz and Diener, 1998), and spatial ability (Astur et al., 1998; Beatty, 1984; Dawson et 23 

al., 1975; Galea and Kimura, 1993; Grön et al., 2000; Isgor and Sengelaub, 1998; Jonasson, 24 

2005; Linn and Petersen, 1985; Postma et al., 2004; Voyer et al., 1995). Buttressing these 25 

differences in behavior and memory are findings that the predominant neural regions for each of 26 

these cognitive domains, the amygdala for emotional memory (for review see, Roozendaal and 27 

Hermans, 2017) and hippocampus for spatial abilities (among other abilities; for review see,  28 

Eichenbaum and Cohen, 2014), also are reported to show morphological and/or functional 29 

differences depending on sex (for amygdala see, Cahill et al., 2001; Cahill et al., 2004; Canli et 30 

al., 2002; Killgore and Yurgelun-Todd, 2001; Kilpatrick et al., 2006; Stevens and Hamann, 31 

2012; for hippocampus see, Isgor and Sengelaub, 1998; Jacobs et al., 1990; Pfaff, 1966; but see, 32 

Gur et al., 2002; Tan et al., 2016). 33 

These sex differences in emotional memory and spatial ability have typically been 34 

considered as arising from independent and separate brain mechanisms (but see, Pletzer, 2014, 35 

2015; Pletzer et al., 2017). However, in this paper we discuss the parallels between the nature of 36 

the sex differences in the two domains and a third domain (perceptual processing) and evaluate 37 

potential general mechanisms that might lead to systemic sex differences across these domains.  38 

Recently, sex differences have also been reported in perceptual processing and 39 

hemispheric brain activation associated with perceptual processing (Kimchi et al., 2009; Kramer 40 

et al., 1996; Müller-Oehring et al., 2007; Pletzer and Harris, 2018; Pletzer et al., 2013; Pletzer et 41 

al., 2014; Roalf et al., 2006; Scheuringer and Pletzer, 2016). Here, perceptual processing refers 42 
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to the order of processing of a scene, where the global scene, or the scene as a whole, is 43 

processed before local information, or the detail items that make up the scene (Navon, 1977, 44 

1981). Interestingly, sex differences in global-to-local processing are also seen in both the 45 

emotional and spatial domains. In the domain of emotional memory, women show a bias towards 46 

“detail” and men show a bias towards “gist” (Cahill and van Stegeren, 2003; Nielsen et al., 2013, 47 

2014; Nielsen et al., 2011). The domain of spatial abilities does not share the same parallels in 48 

nomenclature observed in emotional memory, however, there is evidence suggesting that global-49 

to-local processing performance is related to some forms of spatial ability, such as performance 50 

on the Judgment of Line Orientation Test (Basso and Lowery, 2004). As a result, sex differences 51 

in visuo-spatial processing and the accompanying sex differences in the brain while processing 52 

global-to-local stimuli have been proposed to account for sex differences in other cognitive 53 

domains including spatial abilities and emotional memory (Pletzer, 2014; Pletzer et al., 2013).  54 

There are likely widespread and complex mechanisms underlying these similar sex 55 

differences across cognitive domains and the brain. We propose that sex differences in the locus 56 

coeruleus (LC) structure and function (Bangasser et al., 2010; Bangasser et al., 2011; Curtis et 57 

al., 2006; De Blas et al., 1990; Guillamón et al., 1988; Pinos et al., 2001) contributes to sex 58 

differences in encoding and retrieval processes via the many connections the pontine nucleus 59 

shares with both the amygdala, hippocampus, and throughout the brain (Abercrombie et al., 60 

1988; Aston-Jones, 2004; Buffalari and Grace, 2007; Canteras et al., 1995; Cedarbaum and 61 

Aghajanian, 1978; Jones and Moore, 1977; Loughlin et al., 1986a; Loughlin et al., 1986b; 62 

Morrison et al., 1978; Pasquier and Reinoso-Suarez, 1978; Segal and Landis, 1974; Segal et al., 63 

1973; Wallace et al., 1992). 64 
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The LC is relevant for understanding how sex differences occur in preferences for details 65 

vs. gist because the LC helps identify and re-orient attention to salient stimuli in the environment 66 

(for reviews see, Roozendaal and Hermans, 2017; Sara, 2009; Sara and Bouret, 2012) and 67 

selectively increases processing of salient stimuli via interactions with local cortical salience 68 

signals (Mather et al., 2016). However, despite parallels in sex differences across cognitive 69 

domains and the ability of the LC to influence what information is identified as salient and how 70 

strongly it is weighted, little work has been geared towards understanding whether and how the 71 

locus coeruleus-norepinephrine (LC-NE) system might contribute to any parallel sex differences 72 

in memory processes. In this review, we first summarize sex differences in these three disparate 73 

domains of emotional memory, spatial ability, and perceptual processing. We then summarize 74 

sex differences in brain morphology, function, and/or activation related to each of these domains, 75 

followed by discussion of possible mechanisms contributing to parallels in sex differences across 76 

cognitive domains and the brain.  77 

 78 

2. Sex differences in gist and detail memory are observed across 79 

domains 80 

 81 

2.1 Defining gist versus detail memory 82 

 Gist and detail memory are defined as follows; gist refers to the information central to the 83 

event, or, “any fact or element pertaining to the ‘basic story’ that could not be ‘changed or 84 

excluded without changing the basic story line’” (Heuer and Reisberg, 1990, pg. 499), while 85 

detail refers to peripheral information that has no bearing on the context of the story line (Heuer 86 
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and Reisberg, 1990). Heuer and Reisberg (1990) showed participants a slideshow, with each 87 

slide having a short accompanying narrative. The images and accompanying narrative either had 88 

an emotional component or not. In the non-emotional version, a mother and son visit the son’s 89 

father at a garage where he is a mechanic and is fixing a broken-down car shown in an earlier 90 

slide. In the emotional version, the mother and son visit the son’s father at a hospital where he is 91 

a surgeon and is operating on a victim of a car accident shown in an earlier slide. Memory for 92 

gist and detail information was enhanced for the emotional story over the neutral story. As we 93 

will review below, this emotion-related enhancement for gist and detail information differs 94 

between men and women and may relate to sex differences in other aspects of episodic memory, 95 

with parallels in sex differences even extending to perceptual processing.  96 

 97 

2.2 Gist and Detail: sex differences in emotional memory 98 

Research suggests that men and women process and communicate emotional information 99 

differently. For instance, women are reported to more accurately communicate emotional 100 

information nonverbally (Buck et al., 1974), show more facial expressivity despite reporting the 101 

same amount of emotion as men (Kring and Gordon, 1998), are more accurate at identifying 102 

emotional expressivity in others (Hall and Matsumoto, 2004), experience greater affect intensity 103 

(Fujita et al., 1991), and recall more positive and negative life events than men (Fujita et al., 104 

1991). Yet the underpinnings of such behavioral differences have only been examined recently, 105 

with studies showing that these sex differences do not stop at expressivity but extend to what 106 

type of information is encoded and retrieved under emotional circumstances. The differences in 107 

encoding and retrieval seem to reside mainly in what features of emotional stimuli are 108 

remembered, typically studied in the context of emotional scenes or situations.  In particular, as 109 
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will be reviewed below, women appear to show preferential encoding and retrieval of item 110 

details for emotional stimuli encountered in the lab and emotional autobiographical memories. In 111 

contrast, men appear to preferentially encode and retrieve more gist-like information from the 112 

same experiences.  113 

 114 

2.2.1 Sex differences in gist and detail memory for autobiographical memories 115 

While Heuer and Reisberg (1990) examined memory for gist and detail in the laboratory 116 

without concern for sex of participants, as outlined below, others have reported sex differences in 117 

recall patterns associated with gist and detail in autobiographical memories. 118 

Findings that women recalled more positive and negative life events than men (Fujita et 119 

al., 1991), raises the question of at what stage of information processing such differences occur. 120 

For instance, a difference in recall performance can stem from differences in encoding, 121 

organization, retrieval, and/or response generation. A series of three studies eliminated a number 122 

of potential explanations, including sex differences in response generation, mood congruence 123 

between memory valance and current mood, tendency to ruminate, and even sex differences in 124 

semantic memory (Seidlitz and Diener, 1998). A lack of sex differences in semantic memory 125 

juxtaposed against sex differences in autobiographical memory in the same people suggests that 126 

women and men may be encoding life events differently. To test this possibility, participants 127 

were instructed to log event descriptions at the end of each day over a 6-week journaling period. 128 

When asked to recall as many journaled events as possible, men and women recalled a similar 129 

number of events, however, women recalled more positive events, while men reported more 130 

repeat events than women, suggesting they may not differentiate events to the same degree as 131 

women (Seidlitz and Diener, 1998). A word count for each event logged over the 6-week 132 
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journaling period revealed a significant sex effect on the amount of detail recorded for events, 133 

with women recording more detail per event than men(Seidlitz and Diener, 1998), suggesting 134 

that women may encode more peripheral detail information in their daily life (e.g., I went to 135 

dinner at The District with Dave) whereas men may encode more gist-type information (e.g., I 136 

went to dinner with a friend).  137 

 138 

2.2.2 Sex differences in gist and detail emotional memory in the laboratory setting 139 

The tendency for women to record more detail for autobiographical events than do men 140 

(Seidlitz and Diener, 1998) has also been observed in the laboratory setting for emotional 141 

information. In particular, Cahill and colleagues have used the three-phase story1 to better 142 

understand what features of emotional information men and women are more likely to recall.  143 

After exposure to the emotional version of the three-phase story, men recalled more gist 144 

information (e.g., the mother and son were leaving the house), while women recalled more 145 

peripheral detail information (e.g., the mother and son were standing in front of a house with a 146 

blue door; Nielsen et al., 2013). These mnemonic effects appeared to be modulated by sex 147 

hormones, as women only differed from men during the high-female-sex-hormone luteal phase 148 

of the menstrual cycle. Women tested during the low-female-sex-hormone follicular phase of the 149 

menstrual cycle showed no preference for one type of information over the other, exhibiting 150 

                                                 
1 The three-phase story is a slideshow of images with accompanying narrative (adapted from, Heuer and Reisberg, 

1990). There is a neutral and a negative version, each consisting of a beginning, middle, and end. The middle phase 

differs between the neutral and negative version. The neutral version explains the middle set of slides as an 

emergency drill viewed by a mother and son. The negative version explains the same set slides as the son being 

seriously injured. The middle phase of the emotional version of the story is typically better recalled than the same 

phase of the neutral version (Cahill et al., 1994). 
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similar recall rates for gist and detail information. Consistent with this finding, women’s 151 

hormonal contraceptive status also relates to differences in gist versus detail recall (Nielsen et 152 

al., 2014; Nielsen et al., 2011). Both studies found that women using hormonal contraception 153 

performed similarly to men, showing better recall of gist information in the emotional condition. 154 

In contrast, women not using hormonal contraception, and who therefore had higher endogenous 155 

female sex hormones, showed better memory for detail information in the emotional condition. 156 

Interestingly, in each of Nielsen et al.’s aforementioned studies, pupil and eye tracking data 157 

indicated that all groups showed similar attention and arousal while viewing the slideshow, 158 

suggesting that sex differences in gist versus detail memory profile are not driven by differences 159 

in attention but rather by differences in how the same information is encoded, consolidated 160 

and/or later retrieved.  161 

 162 

2.3 Orientation and Landmarks: Gist and detail in spatial abilities 163 

There has been much research on sex differences in spatial abilities, with men 164 

outperforming women on some but not all tasks (Jonasson, 2005; Linn and Petersen, 1985; 165 

Voyer et al., 1995). Gonadal and stress hormones influence these behavioral differences, and 166 

show interactions as well in studies of sex differences in spatial memory (Bowman et al., 2003; 167 

Bowman et al., 2001; Conrad et al., 2004; Luine et al., 1994; Shors et al., 1998; Williams et al., 168 

1990; Wood et al., 2001). In the following sections, we first review evidence of sex differences 169 

in spatial memory under non-stressful conditions. We then discuss how these differences in 170 

spatial memory may be explained by differences in gist and detail memory biases in males and in 171 

females. 172 

 173 
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2.3.1 Sex differences in spatial ability 174 

A great deal of work on sex differences in spatial memory has been conducted in animals. 175 

A reliable finding across many of these studies is that males outperform females on a battery of 176 

spatial tasks, such as the radial arm maze, symmetrical maze, and the Morris water maze (Beatty, 177 

1984; Dawson et al., 1975; Isgor and Sengelaub, 1998). In humans, even though it has been 178 

demonstrated that males perform better on various measures of spatial ability and spatial 179 

memory, the particular components of spatial memory giving rise to these sex differences are 180 

still unclear (Postma et al., 1999). However, as will be reviewed below, the pattern of males 181 

outperforming females does not hold true for every measure of spatial ability (Eals and 182 

Silverman, 1994; Galea and Kimura, 1993; James and Kimura, 1997; McBurney et al., 1997; 183 

Silverman and Eals, 1992).  184 

Clear sex differences in humans have been identified in tasks measuring route learning, 185 

mental rotation, and spatial perception, with males outperforming females (Astur et al., 1998; 186 

Galea and Kimura, 1993; Grön et al., 2000; Linn and Petersen, 1985; Postma et al., 2004). Men 187 

also are reported to outperform women on spatial working memory tasks. For instance, in the 188 

Corsi Block-Tapping task, a task requiring the participant to repeat back a sequence of taps on a 189 

set of spatially separated blocks, men show significantly larger spatial working memory spans 190 

than women evidenced by men completing increasingly longer spatial sequences than women 191 

(Capitani et al., 1991; Orsini et al., 1986; Orsini et al., 1987).  192 

However, this pattern of better performance by men is less consistent in tasks of object 193 

location memory, as women often remember the locations of objects better (Eals and Silverman, 194 

1994; James and Kimura, 1997; Silverman and Eals, 1992)and tend to recall more landmarks 195 
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visible on maps (Galea and Kimura, 1993). Women also outperform men on a memory game that 196 

relies on remembering the location of a previously seen item in a grid (McBurney et al., 1997).  197 

As observed with emotional memory, gonadal hormones appear to play an important role 198 

in the observed sex differences in spatial memory (e.g., Williams et al., 1990). In animals, male 199 

rodents receiving anti-androgens during an embryonic critical period and then orchiectomized 200 

(testes removed) after birth showed decrements in water maze performance compared with 201 

intact, untreated males in adulthood. Conversely, masculinization of females via androgen 202 

administration during the same critical period led to improved spatial learning, such that they 203 

were similar to intact males and better than intact females (Isgor and Sengelaub, 1998). Similar 204 

to the effects of anti-androgen administration on spatial performance in male rodents, men 205 

undergoing a sex-change operation and receiving high doses of cross-sex hormones combined 206 

with androgen deprivation performed worse on a mental rotation task (Van Goozen et al., 1995). 207 

In contrast, female-to-male transsexuals improved on the mental rotation task after cross-sex-208 

hormone treatment. Overall, it appears that androgens are associated with better performance on 209 

spatial tasks measuring the ability to “orient oneself in relation to objects or places, in view or 210 

conceptualized across distances…” (Eals and Silverman, 1994, pg.96), such as locating target 211 

shapes within a larger pattern, and mental rotation/manipulation (Christiansen and Knussmann, 212 

1987; Janowsky et al., 1994). In contrast to the beneficial effects of androgens on spatial 213 

cognition, high estradiol levels during the menstrual cycle have been associated with worse 214 

performance on these types of tasks in females (Hampson, 1990). 215 

Thus, when looking at the spatial tasks in which males outperform females and vice 216 

versa, one can see that the spatial abilities being measured differ, with males performing better 217 
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on tasks that require orienting oneself in space or mentally manipulating objects in space and 218 

women performing better on tasks requiring one to recall the location of objects in space.  219 

 220 

2.3.2 Gist and detail in spatial ability 221 

There appear to be some parallels between the sex differences seen in which features of 222 

emotional scenes are recalled and which features of spatial information are recalled. In recalling 223 

emotional scenes, males favor gist and females details relatively more. Similar sex differences 224 

are seen in the spatial domain. Men tend to focus on the gist of where they or objects are in 225 

space, allowing them to more flexibly manipulate themselves or objects within that space. 226 

Women, on the other hand, tend to recall the details of the space they occupy, allowing them to 227 

better remember objects in an array. 228 

Similar differences are also seen in how men and women navigate in space and provide 229 

directions. Studies show that men do not necessarily outperform women on these tasks, but that 230 

men and women use different strategies, with men relying more on Euclidean, or allocentric 231 

navigation, and women relying more on landmarks, or egocentric navigation (Cherney et al., 232 

2008; Lawton, 1994; Saucier et al., 2002). Nevertheless, eye-tracking revealed men and women 233 

attend to the same features on a map, suggesting that the sex differences arise from differences in 234 

encoding and/or consolidation rather than from differences in attention (MacFadden et al., 2003).  235 

Thus, in both laboratory tasks assessing spatial ability (e.g., mental rotation or object 236 

location) and navigation, it seems as though women are encoding and retrieving detail 237 

information (e.g., location of objects), allowing them to better identify changes in their local 238 

environment, while men are encoding and recalling gist information (e.g., orientation of objects), 239 

which allows them to find alternate routes over large areas. 240 
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Creating detail- and gist-type distinctions for spatial memories is not new. The multiple 241 

trace theory (Moscovitch et al., 2005) posits that some spatial memories are akin to episodic 242 

memories, with detailed representations not only of the route but also of the details of the scenes 243 

that allow re-experiencing the environment as one mentally walks through it. This level of detail 244 

may be useful for re-experiencing the environment but not for navigation.  In contrast, other 245 

spatial memories are akin to semantic memories, with schematic representations that include 246 

only features which are salient cues, which may be more useful for navigation but not for re-247 

experiencing the environment. This would suggest that spatial memories in women tend to be 248 

encoded in a more egocentric, episodic fashion, while spatial memories in men tend to be 249 

encoded in a more allocentric, semantic fashion.  250 

As with non-spatial episodic vs. semantic memories, evidence suggests that the kind of 251 

detailed spatial memory which shares features with episodic memory is hippocampal-dependent, 252 

while the kind of spatial memory sharing features with semantic memory is less hippocampal-253 

dependent (Moscovitch et al., 2005). This pattern suggests that the detail associated with female 254 

spatial memory performance would be hippocampal-dependent, while the gist associated with 255 

male spatial memory performance would not be hippocampal-dependent. However, as we will 256 

review in section 3, below, this is not the case. Brain activation in humans during recall of 257 

episodic autobiographical memories indicates that men tend to recruit hippocampal circuits, 258 

whereas women tend to recruit more prefrontal cortical regions (Piefke et al., 2005; St. Jacques 259 

et al., 2011). This pattern of brain activation aligns with other findings showing male animals 260 

and humans tend to show greater hippocampal reliance during spatial learning and memory tasks 261 

than females, while females tend to rely more on frontal regions (Grön et al., 2000; Roof et al., 262 

1993).  263 
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 264 

2.4 Global and local processing is the gist and detail of perceptual processing  265 

Sex differences in gist and detail processing also extend to perceptual processing. 266 

Perceptual processing, here, refers to the temporal order in which a scene and its individual 267 

features are recognized by an individual. In studies examining these processes, the overall scene 268 

is the global level of processing, whereas the individual features making up the scene are the 269 

local level of processing (Navon, 1977, 1981). This is often tested using the Navon task (Navon, 270 

1977, see Figure 1 for example of hierarchical stimuli), which requires participants “...to respond 271 

to an auditorily presented name of a letter while looking at a visual stimulus that consisted of a 272 

large character (the global level) made out of small characters (the local level)” (Navon, 1977, 273 

pg. 353). Two findings suggest that the global level is typically processed first (Navon, 1977). 274 

First, when participants were given no instruction on whether to attend to the global or local 275 

level (divided attention), interference in responding to the auditory stimuli occurred only when 276 

there was a mismatch between the global level character and the auditory stimulus, not between 277 

the local level character and the auditory stimulus (Navon, 1977). Second, when participants 278 

were asked to focus on only the global or local features (selected attention paradigm), in the 279 

absence of auditory stimuli, participants were unable to identify the local features when asked to 280 

focus on the global level, but could identify the global features when asked to focus on the local 281 

level (Navon, 1977). Interestingly, these global and local features of a scene can be likened to the 282 

gist and detail of an emotional story or spatial paradigm, where the gist represents the global, 283 

overall theme/location and detail represents the local, individual non-essential features within the 284 

theme/location. If the sex differences in memory for gist and detail information extend to this 285 
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perceptual domain, men should have a greater global advantage and women a greater local 286 

advantage. 287 

 288 

Figure 1 should go here. 289 

Figure 1. Example of hierarchical stimuli used for testing global and local perceptual processing. 290 

On the left, the large letter ‘T’ is at the global level and the small letter ‘E’s creating the shape of 291 

the large ‘T’ are at the local level. On the right, the letter ‘T’ is used at both the global and local 292 

level. The global level is processed prior to the local level (Navon, 1977). 293 

  294 

2.4.1 Sex differences in global and local processing 295 

Although the literature examining global vs. local processing biases does not always 296 

show sex differences, there are some findings indicating a male bias towards global processing 297 

versus a female bias towards local processing. In one study reporting sex differences using an 298 

adaptation of the Navon task (Kimchi and Palmer, 1982), effects are seen as early as 299 

preadolescence, with boys aged 4-12 showing more global selections than girls of the same age 300 

(Kramer et al., 1996). In this adaptation, hierarchical stimuli consist of large shapes (global) 301 

constructed from smaller shapes (local) and rather than recording reaction time to identify target 302 

stimuli at the global or local level, participants choose which two out of three stimuli are similar; 303 

choices about match can be made at the local level or global level (Kimchi and Palmer, 1982). 304 

This effect in the Kimchi-Palmer task has not been replicated in adults, with men and women 305 

making a similar number of global choices (Basso and Lowery, 2004; Scheuringer and Pletzer, 306 

2016). However, when reaction time to selection is examined, sex differences have been 307 
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reported, with women showing faster reaction times than men for local choices and men showing 308 

faster reaction times than women for global choices (Scheuringer and Pletzer, 2016). 309 

In contrast to the Kimchi-Palmer task, sex differences are more consistently observed in 310 

the Navon task using both letters and shapes. In one study, participants were asked to respond 311 

anytime a particular letter appeared. The letter could appear at either the global or local level. 312 

Women responded faster when the target appeared at the local level compared to the global level, 313 

whereas men did not differ in their response times between global and local location of the target 314 

(Roalf et al., 2006). In another study, while men and women showed a general global advantage 315 

in a divided attention paradigm (given no instruction on which level to attend to), such that 316 

reaction times were faster for global than local targets, women showed decreased global 317 

advantage compared with men during trials when asked to focus on either the global or local 318 

level (selected attention paradigm) only during the high-hormone luteal phase, not during lower 319 

hormone states (Pletzer et al., 2014). Following this pattern, testosterone was positively 320 

correlated with global advantage during the selected attention paradigm in men and women 321 

during the low-hormone follicular phase but negatively correlated with the global advantage 322 

during the high-hormone luteal phase (Pletzer et al., 2014). 323 

Sex differences in adults in global and local processing have also been reported in a study 324 

using numerical stimuli rather than the traditional letter stimuli (Pletzer et al., 2013). In this 325 

study, participants were required to compare two two-digit numbers and determine which 326 

number was larger. While men and women showed slower reaction times to numbers within the 327 

same decade (e.g., 62 vs 66) versus those in different decades (e.g., 62 vs 48), men showed less 328 

of a difference in reactions times between the two conditions than women during the low-329 

hormone follicular phase of the menstrual cycles (Pletzer et al., 2013). This pattern suggests that 330 
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men are likely processing multi-digit numbers as unitary, whereas women may be processing 331 

multi-digit numbers as individual items placed together. This interpretation was supported when 332 

looking at trials where number pairs were mismatched in whether both digits within a number 333 

were larger or smaller than both digits in the other number (e.g., 62 vs. 51 or 62 vs. 57). In these 334 

trials, women also showed slower reaction times (Pletzer et al., 2013), suggesting that women 335 

allocated attention resources to the second digit of the numbers even though larger or smaller 336 

judgements could be made on the first digit alone. 337 

However, as was seen for the Kimchi-Palmer adaptation to the Navon task, sex 338 

differences in global vs. local attention have not been consistently reported. One study only 339 

found differences when examining response facilitation effects between congruent and 340 

incongruent trials (Müller-Oehring et al., 2007). Congruent trials were those where both the 341 

global and local level contained the same target letter (e.g., small “T”s forming one large “T”), 342 

while incongruent trials were those where one level consisted of one target letter and the other 343 

level consisted of the second target letter (e.g., small “E”s forming one large “T”, or vice versa). 344 

In this instance, while men showed response facilitation (i.e., faster reaction times on congruent 345 

trials) regardless if attention was focused on the global or local level, women only showed 346 

response facilitation when attention was focused on the global level and the local level was also a 347 

target, but did not show facilitation when attention was focused on the local level and the global 348 

level was also a target (Müller-Oehring et al., 2007). 349 

The variability in sex differences have been elsewhere attributed to stimuli selection, with 350 

letter stimuli purported to pick up sex differences whereas shape or line stimuli are less likely to 351 

pick up such differences (Pletzer and Harris, 2017). Sex differences are also less likely to be 352 

observed in divided attention paradigms compared with selective attention paradigms (Pletzer 353 
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and Harris, 2017). Despite these inconsistencies, there do appear to be some sex differences in 354 

global and local processing, with men trending toward more gist or global processing of 355 

hierarchical stimuli and women trending toward more detail or local processing of hierarchical 356 

stimuli (see Figure 2). 357 

 358 

Figure 2 should go here. 359 

Figure 2. Sex differences in global and local processing. Pictorial depiction of the trend for men 360 

toward more gist or global processing of hierarchical stimuli and women toward more detail or 361 

local processing of hierarchical stimuli. 362 

 363 

2.5 Overview 364 

We have reviewed three disparate domains, which all appear to share a similar theme in 365 

terms of sex differences. In emotional autobiographical and episodic memory, we see that men 366 

appear to encode and retrieve more gist-type information, such as limited detail information for 367 

daily events or the central theme to a story, while women appear to encode and retrieve more 368 

detail-type information, such as more detailed information for daily events or more peripheral 369 

information from a story with no bearing on the central theme. We see this phenomenon extend 370 

to spatial abilities where men appear to encode more long-distance gist-type information when 371 

processing spatial information, which allows them to perform better on tasks requiring they 372 

orient themselves or objects in space, while women appear to encode more short-distance detail-373 

type information when processing spatial information, allowing them to perform better on tasks 374 

requiring they remember where in space objects are located. Lastly, although less robustly, we 375 

see this theme carry through to perceptual processing, where men show instances of greater 376 
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global advantage, or better identification of central, gist-type information, while women show 377 

instances of better identification of local, detail-type information within hierarchical stimuli. 378 

We propose it is not just coincidence that at least three cognitive domains share similar 379 

sex differences in allocation of encoding and/or retrieval processes. In the next section, we will 380 

review the neural underpinnings and sex differences in these processes which may contribute to 381 

the sex differences in behavior.  382 

 383 

3. Are sex differences in the brain regions associated with these tasks 384 

responsible for sex differences in emotional memory, spatial 385 

memory, and perceptual processing? 386 

 The sex differences in behavior and memory we have covered so far are associated with 387 

sex differences in the brain. We first will cover sex differences in the primary regions associated 388 

with emotional memory, spatial behaviors, and perceptual processing, the amygdala, 389 

hippocampus, and hemispheric laterality, respectively2. However, as we will note, while sex 390 

differences in these regions do reflect sex differences in their associated cognitive domains, they 391 

                                                 
2 It is important to note that the hippocampus also is involved in emotional memory processes, such that amygdala 

activation modulates hippocampal function when forming these emotional memories.  The amygdala aids in the 

formation of episodic memories containing emotional components, such that activation of the amygdala signals the 

hippocampus to maintain that information for future use (Phelps, 2004). The relationship between structures also is 

bidirectional, highlighting that episodic memories for information, in other words, for things that have not happened, 

to also lead to increased amygdala activation. For example, once one hears the phrase “leaves of three, leave them 

be” they may show an amygdala response to “leaves of three” similar to the response exhibited by someone who has 

experienced the negative effects of coming in contact with such leaves.  
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do not address the overall pattern of a bias toward gist information in males and toward detail 392 

information in females. As such, a more unifying mechanism which can lead to this kind of 393 

widespread differentiation should also be considered. 394 

 395 

3.1 Sex differences in the amygdala and emotional stimuli 396 

The amygdala is integral to processing emotional stimuli and memory formation for 397 

events with emotional import (Anderson et al., 2003; Cahill et al., 1995; Fox et al., 2001; Phelps, 398 

2004; Roozendaal and Hermans, 2017). Given the sex differences in reactivity and memory for 399 

emotional information, it is not surprising that men and women also display differences in 400 

amygdalar responses to emotional information as measured using functional magnetic resonance 401 

imaging (fMRI) and positron emission tomography (PET). For instance, using PET, men showed 402 

greater right amygdala glucose metabolism while viewing negative video clips compared to 403 

neutral video clips, but women showed greater left amygdala glucose metabolism while viewing 404 

the negative video clips (Cahill et al., 2001).  405 

These patterns of amygdala activity were also observed using an fMRI paradigm. In one 406 

study, participants were scanned while viewing negative and neutral images (Cahill et al., 2004). 407 

Two weeks later, participants returned and completed a recognition test of the photos they had 408 

seen during the prior session intermixed with new emotional and neutral images. Amygdala 409 

activation during the first session, when images were first viewed, was then examined for those 410 

images correctly recognized versus those not correctly recognized. Men showed significantly 411 

greater right amygdala activation and women showed significantly greater left amygdala 412 

activation in response to correctly recognized negative images (Cahill et al., 2004). Additionally, 413 

men tended to show greater activation of right hemisphere brain regions, including the anterior 414 
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hippocampus, globus pallidus, frontal cortex, and bilateral parietal, whereas women showed 415 

more left hemisphere brain activation, including posterior cingulate, middle temporal gyrus, and 416 

inferior parietal cortex. Others replicated this sex difference in amygdala laterality in brain 417 

responses during viewing of negative images correctly recognized three weeks later, although 418 

only women showed an overall trend to exhibit more activation in left hemisphere brain regions, 419 

with the significant laterality effect in men limited to only the amygdala (Canli et al., 2002).  420 

Others have failed to find this same task-based effect of sex on laterality, but still report 421 

sex differences in amygdala and brain activation during the viewing of emotional stimuli 422 

(Killgore and Yurgelun-Todd, 2001). A meta-analysis also reported a lack of consistency in the 423 

laterality differences, but still found sex differences in brain activation patterns to emotional 424 

stimuli (Stevens and Hamann, 2012). This meta-analysis revealed that the only significant 425 

amygdala activation men had over women was in the left amygdala when viewing positive 426 

emotional stimuli, but not negative stimuli. Other brain regions differed between men and 427 

women, with more sex differences driven by women in studies using negative stimuli, such as 428 

the left hippocampus, suggesting women may be more likely to encode negative images. Other 429 

regions also suggest that women may internalize and ruminate over negative stimuli more than 430 

men, with women showing greater activation in regions such as anterior cingulate and medial 431 

prefrontal cortex, which show increased activity corresponding to self-reports of anger (Denson 432 

et al., 2009)and rumination (Denson et al., 2009; Ray et al., 2005). Meanwhile, men exhibited 433 

greater activation in the right anterior insula and bilateral inferior frontal gyrus in response to 434 

both negative and positive stimuli. Men also showed greater activation of the entorhinal cortex in 435 

response to positive stimuli (Stevens and Hamann, 2012), suggesting that while women show 436 

activation suggesting increased encoding of negative stimuli, men show activation suggesting 437 
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increased encoding of positive stimuli. This positivity bias in memory may help explain why 438 

men show greater risk-taking behaviors than women (among other reasons; see e.g., Mather and 439 

Lighthall, 2012). 440 

 441 

3.2 Sex differences in the hippocampus and spatial memory 442 

There is little dispute that the hippocampus supports spatial memory in animals 443 

(Eichenbaum and Cohen, 2004; Morris et al., 1982; O'Keefe and Nadel, 1978, 1979; Scoville 444 

and Milner, 1957) and in humans (Abrahams et al., 1999; Burgess et al., 2002; Maguire et al., 445 

1998; Maguire et al., 1999; Maguire et al., 1996; Spiers et al., 2001; Vargha-Khadem et al., 446 

1997). In particular, much work in animals implicates hippocampal processes in behaviors 447 

dependent on spatial location, such as food storage and homing, based on evidence that species 448 

that practice these behaviors have much larger hippocampal size compared to species that do not 449 

share these behaviors (Sherry et al., 1992).  450 

Similar to the effects of stress and sex hormone-stress interactions on spatial task 451 

performance, these factors can also modulate hippocampal morphology (Arbel et al., 1994; 452 

Conrad et al., 1996; Magariños et al., 1996; McEwen et al., 1968; Olton et al., 1978; Sousa et 453 

al., 2000; Vyas et al., 2002) and function during these tasks (Bowman et al., 2003; Bowman et 454 

al., 2001; Conrad et al., 1996; Conrad et al., 1999; Galea et al., 1997; McEwen, 2000; Park et 455 

al., 2001). Here, we will focus on the hippocampal involvement in spatial memory and abilities 456 

under normal, non-stressful conditions. 457 

The hippocampus has a high density of sex hormone receptors (Brailoiu et al., 2007; 458 

Simerly et al., 1990), allowing gonadal steroids to modulate hippocampal structure and function 459 

(Foy et al., 1984; Gould et al., 1990; Roof and Havens, 1992; Woolley et al., 1990). Thus, 460 
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unsurprisingly, a number of animal studies have noted various sex differences in the 461 

hippocampal formation, including larger volume in males than females (Jacobs et al., 1990; 462 

Pfaff, 1966). The pattern of larger hippocampal volume in males is less established in human 463 

neuroimaging studies. Although a recent meta-analysis reported that relative to cranial size men 464 

have larger hippocampal volume (Ruigrok et al., 2014), others, including another recent meta-465 

analysis, reported that men and women have comparable hippocampal size (Gur et al., 2002; Tan 466 

et al., 2016), others that women have larger hippocampal volumes (for review, Cahill, 2006), 467 

while still others noted that the difference in size may shift across the lifespan with girls having 468 

larger hippocampi than boys, but with women experiencing greater hippocampal decline than 469 

men (for review, Cosgrove et al., 2007). 470 

Despite the inconsistent results in humans for hippocampal volume, other work in rodents 471 

report larger hippocampal subfields in males which may relate to differences in spatial learning. 472 

In addition to having faster completion times during a maze task, male rats showed CA1 and 473 

CA3 pyramidal cell field volumes approximately 20% larger than females and pyramidal neuron 474 

soma sizes 14-18% larger than females (Isgor and Sengelaub, 1998). This pattern of larger cell 475 

fields and better performance in males suggests that CA1 and CA3 pyramidal cells are highly 476 

involved in spatial tasks associated with better performance in males over females. 477 

Perhaps more influential than structural differences on sex differences in behavior, are 478 

the observations suggesting there are sex differences in the recruitment of other brain regions 479 

during spatial tasks. Lesions of the entorhinal cortex, located in the parahippocampal gyrus and 480 

sharing connections with CA1 and CA3, cause greater impairment in males than in females on 481 

the Morris water maze (Roof et al., 1993). By contrast, female rats show greater deficits on most 482 

measures of a radial maze and Morris water maze tasks when they received frontal cortex lesions 483 
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(Kolb and Cioe, 1996). In humans, a similar reliance on the hippocampus in men and frontal 484 

cortex regions in women was observed using a maze task. It was reported that in addition to 485 

finding their way out of the maze faster, men showed greater activation of the left hippocampus, 486 

right parahippocampal gyrus, and the left posterior cingulate, whereas women consistently 487 

recruited right parietal and right prefrontal cortex during the maze task (Grön et al., 2000). 488 

That women tend to rely on and recruit more frontal regions during spatial tasks aligns 489 

with the above-discussed behavioral studies showing women navigate using landmarks, while 490 

men navigate using more allocentric strategies. In strategies using landmarks, working memory 491 

processes should come online in order to maintain the landmarks in accessible short-term 492 

memory. Working memory relies on frontal regions more than on hippocampal regions (Curtis 493 

and D'Esposito, 2003), which may account for why females show frontal recruitment during the 494 

spatial tasks and males do not (Grön et al., 2000).  495 

 496 

3.3 Sex differences in brain laterality and perceptual processing 497 

Sex differences in the relationship between brain activation and global/local processing 498 

also have been observed (Müller-Oehring et al., 2007; Pletzer et al., 2013; Roalf et al., 2006), 499 

although as seen with the global/local behavioral findings, patterns of brain activation 500 

differences are less robust and consistent than such differences seen for emotional memory and 501 

spatial ability. 502 

Earlier, we discussed findings showing women responded faster when a target letter 503 

appeared at the local versus global level, while men did not differ in their response times (Roalf 504 

et al., 2006). Brain event related potential (ERP) recordings from this same study revealed some 505 

differences in ERP responses for those components related to early visual processing (P100 and 506 
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N150) and cognitive processing (P300). In contrast to bilateral P100 responses in the occipital 507 

lobes when women were viewing global targets, women only showed P100 responses in the right 508 

occipital hemisphere when viewing local targets (Roalf et al., 2006). Meanwhile, men showed 509 

larger amplitude ERPs for the N150 component when the target letter was in a global location 510 

(Roalf et al., 2006). The ERP for the cognitive P300 component followed the behavioral 511 

responses, with men showing no difference between global and local location of the target letter, 512 

whereas women showed higher amplitude P300 components when the target letter was locally 513 

located versus globally located (Roalf et al., 2006). 514 

Brain activation measured via fMRI also revealed sex differences. In the task where 515 

participants made judgements about which number in a pair of numbers was larger, women 516 

showed greater bilateral activation throughout, with greater recruitment of fronto-parietal regions 517 

during within-decade pairs and posterior superior parietal lobule during different-decade pairs 518 

than men during the high-hormone luteal phase of the menstrual cycle (Pletzer et al., 2013). 519 

Sex differences in lateralization have also been observed using letter and shape stimuli 520 

(Pletzer and Harris, 2017). Performance of the Navon task was generally associated with 521 

bilateral increased activation in the parietal and occipital lobes and decreased activation in the 522 

inferior parietal gyri, precuneus, anterior cingulate cortex, and medial prefrontal cortex. 523 

However, brain activation in the occipital lobes was largely right lateralized for global targets 524 

and left lateralized for local targets (Pletzer and Harris, 2017). Lateralization scores, which 525 

indicate greater activation in one hemisphere over the other, showed that women displayed 526 

greater left lateralization in the occipital lobe than men for local targets particularly during 527 

selected attention blocks. Such an effect was not observed in men unless inter-hemispheric 528 

connectivity was taken into account. In this regard, greater negative parieto-parietal connectivity 529 
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was associated with greater left lateralization in the parietal lobe and greater global advantage. 530 

This pattern suggests that men may require more energetic resources to process local details than 531 

women, while women may not require a complimentary increase in energetic resources to 532 

process global items.  533 

 534 

3.4 Overview 535 

In the above section, we reviewed evidence that sex differences in behavior show 536 

corresponding differences in the brain, although differences for emotional memory and spatial 537 

ability are more consistent than for perceptual processing. Given the importance of these brain 538 

structures for the successful execution of their relative cognitive tasks, it is likely that sex 539 

differences in these regions contribute to sex differences in behavior and cognition. One 540 

remaining question is whether these sex differences developed independently from one another 541 

(e.g., sex differences in the amygdala developed with no relation or consequence to sex 542 

differences in hippocampus or hemispheric activation, all of which, coincidentally, led to similar 543 

sex differences in behavioral/cognitive outcomes) or whether some additional mechanism led to 544 

a more favorable gist versus detail strategy in males and females leading to similar sex 545 

differences to take shape in the brain, behavior, and cognition. Concluding that the similarity of 546 

sex differences across these three domains all developed as independent systems, with no 547 

common guiding mechanism, suggests that brain development occurs in an unorganized, 548 

stochastic fashion, which is not the case (Schottdorf et al., 2015; Sporns et al., 2004). As a result, 549 

it seems more likely that more specific pressures or mechanisms led to common sex differences 550 

across these domains and related brain regions. Below we review possible mechanisms for why 551 

and how these differences developed. 552 
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 553 

4. Are there any general brain mechanisms that could help account 554 

for the similar sex differences seen across multiple domains? 555 

 There are multiple possibilities for why this gist and detail parallel is observed across 556 

multiple domains. Each of which can account for the parallel to some extent, but generally fall 557 

short when the questions of “why and “how” are posed. Ideally, a mechanism able to explain this 558 

parallel would address both why the difference occurs and how the difference occurs. Below we 559 

review three possible explanations, and their individual strengths and weaknesses. 560 

 561 

4.1 Sex differences in global and local perceptual processing as a mechanism for sex 562 

differences in gist and detail encoding and retrieval in emotional and spatial memory 563 

 It has been proposed that sex differences in visuospatial processing of global and local 564 

features drive sex differences in other aspects of cognition, including spatial abilities, emotional 565 

memory, and verbal abilities (Pletzer, 2014; Pletzer et al., 2013). In one such account, men and 566 

women attend to different aspects of presented scenes, leading to sex differences in recall or 567 

navigation performance (Pletzer, 2014). However, this account ignores work showing that men 568 

and women scan, fixate, and attend to emotional scenes (Nielsen et al., 2013, 2014; Nielsen et 569 

al., 2011) and maps (MacFadden et al., 2003) in a similar fashion. Nonetheless, one study 570 

examining the relationship between global-to-local processing and other cognitive domains 571 

(spatial navigation and verbal fluency), did find that global advantage in the Navon task during 572 

selected attention blocks was related to better performance on a spatial task requiring allocentric 573 

navigation, however, the effect was stronger in women than men (Pletzer et al., 2017).  574 
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Some studies have examined how manipulating the spatial nature of hierarchical stimuli 575 

(line orientation vs. shape judgement) might modulate sex differences in global and local 576 

processing. In one study (Kimchi et al., 2009), men and women both showed global advantage 577 

(i.e., faster reaction times to global targets than local targets), and did not differ in local 578 

processing reaction times. However, sex differences did emerge when stimulus type was taken 579 

into consideration. For instance, women were sensitive to differences in line orientation between 580 

global and local levels, such that they showed global interference of classification of local line 581 

orientation when the global line orientation differed. Men, on the other hand, did not show global 582 

interference resulting from differences in line orientation (Kimchi et al., 2009). Conversely, 583 

women more accurately classified shape stimuli as either open or closed patterns than men 584 

(Kimchi et al., 2009). This pattern follows sex differences in spatial ability, suggesting that men 585 

outperform women on tasks centered on orienting oneself or objects in space and women 586 

outperform men on tasks centered on object recognition.  587 

While sex differences in global versus local processing may contribute to sex differences 588 

in gist versus detail encoding and retrieval in spatial tasks, it does not account for why scenes and 589 

spaces are encoded and later retrieved differentially between males and females. Evolution and 590 

natural selection suggest that these differences would have been selected to increase survival. 591 

Thus, while sex differences in visuospatial processing may contribute to sex differences in 592 

encoding and retrieval across domains, that explanation still does not address why males and 593 

females would develop sex differences in and across these domains.  594 

 One proposal, aimed at explaining how sex differences occur across domains, suggests 595 

that sex differences in brain laterality related to visuospatial processing drive sex differences in 596 

and across different cognitive functions (Pletzer, 2014). Problematically, laterality differences 597 
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have been observed in emotional memory and global/local processing, but not in an entirely 598 

coherent manner across the two domains. While sex differences in emotional memory show 599 

greater left amygdala and hemisphere activation in women and right amygdala and hemisphere 600 

activation in men (Cahill et al., 2001; Cahill et al., 2004; Canli et al., 2002; Stevens and 601 

Hamann, 2012), the findings for sex differences in left versus right hemisphere activation for 602 

global versus local stimuli is less consistent (Pletzer and Harris, 2017; Pletzer et al., 2013; Roalf 603 

et al., 2006). This is problematic given the striking conceptual parallel between the gist and 604 

detail differences in emotional memory and the global and local differences in visuospatial 605 

processing (see Section 3 for discussion). Furthermore, as discussed in Section 3, sex differences 606 

in laterality of the amygdala for emotional memory and more generally between hemispheres for 607 

perceptual processing do not account for why and how these differences came to exist. 608 

Importantly, this account also does not adequately explain sex differences in the hippocampus 609 

and elsewhere in the brain as they pertain to spatial abilities where laterality does not play a 610 

robust or consistent role. Thus, in order to make progress toward what forms these sex 611 

differences take in the brain and behavior, we could benefit from a more cohesive and efficient 612 

mechanism to account for sex differences across cognitive domains and the brain.  613 

 614 

4.2 Differential evolutionary pressures favored different encoding and retrieval 615 

strategies between males and females 616 

One possible explanation for “why” sex differences exist in such a uniform manner 617 

across cognitive domains are theories of differing evolutionary pressures for males and females.  618 

Evolutionary pressures associated with spatial navigation may account for biases toward 619 

encoding and retrieving gist versus detail information in males and females. When looking at the 620 
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spatial tasks in which males outperform females and vice versa, one can see that the spatial 621 

abilities being measured differ, with males performing better on tasks requiring orienting oneself 622 

in space or mentally manipulating objects in space (Astur et al., 1998; Beatty, 1984; Cherney et 623 

al., 2008; Dawson et al., 1975; Galea and Kimura, 1993; Grön et al., 2000; Isgor and Sengelaub, 624 

1998; Linn and Petersen, 1985; MacFadden et al., 2003; Postma et al., 2004; Saucier et al., 625 

2002) and females performing better on tasks requiring the recall of object locations in space 626 

(Cherney et al., 2008; Eals and Silverman, 1994; Galea and Kimura, 1993; James and Kimura, 627 

1997; MacFadden et al., 2003; McBurney et al., 1997; Saucier et al., 2002; Silverman and Eals, 628 

1992). These features may also relate to findings that men tend use allocentric navigation 629 

strategies while women tend to use egocentric navigation strategies (Cherney et al., 2008; 630 

Lawton, 1994; Saucier et al., 2002).  631 

The Hunter-Gatherer Theory (Eals and Silverman, 1994) posits that the pattern of sex 632 

differences observed in spatial ability arises from different evolutionary pressures facing men 633 

and women, where early man needed to travel over large areas to hunt, and women were more 634 

likely to live and forage in one region (Silverman et al., 2007; Silverman and Eals, 1992). Thus, 635 

the types of tasks men excel in are abilities allowing for a more allocentric approach to encoding 636 

spatial information and navigation (Dabbs et al., 1998; Silverman and Eals, 1992). For instance, 637 

when hunting prey males do not know where or how far from home the hunt will come to end. If 638 

males encoded and retrieved landmark information they would need to retrace their steps to 639 

return home. However, that may not be the most direct route home, making egocentric 640 

navigation (e.g., using landmarks and “right”/”left” direction) a less adaptive strategy for males 641 

than the allocentric strategy that males tend to utilize. By contrast, the types of tasks women 642 

excel in would, for example, allow women to better recall the locations of items fixed in place, 643 
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such as a particular food source and better monitor their immediate surroundings (Dabbs et al., 644 

1998; Silverman and Eals, 1992). 645 

Evolution is aimed at balancing optimal efficiency of each system within an organism 646 

(Noor and Milo, 2012; Schuetz et al., 2012; Shoval et al., 2012; Yun et al., 2006). Hunting and 647 

foraging for food was essential for survival, making evolutionary pressures for spatial strategies 648 

of utmost importance. Given that systems would be geared toward efficiency, these encoding and 649 

retrieval processes should then be utilized for other behavioral and cognitive domains. These 650 

pressures offer an account of “why” sex differences occur, but still do not address “how” they 651 

are occurring.  652 

We propose that the “how” mechanism results from differences in the brain. However, 653 

following the concept of efficiency within and across systems, it seems unlikely that the 654 

aforementioned sex differences in the brain regions related to these behavioral and cognitive 655 

processes developed independent of one another in a stochastic fashion. Rather, it is possible that 656 

another brain region, able to effect change throughout the brain, modulates these processes 657 

differently in males and females leading to different patterns of brain activation and different 658 

patterns of performance.   659 

One brain region that may be able to exert the level of widespread neural modulation 660 

required to affect each of these domains is the locus coeruleus (LC). The LC regulates vigilance 661 

and re-orienting attention to all manner of salient stimuli, regardless of valence. Through its 662 

broad and diffuse release of norepinephrine (NE) across most of the brain (Abercrombie et al., 663 

1988; Aston-Jones, 2004; Morrison et al., 1978), the LC is ideally positioned to modulate 664 

activity in various regions implicated in attention and memory (for reviews see, Sara, 2009; Sara 665 

and Bouret, 2012), and importantly, to exert different effects throughout the brain via sex 666 
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differences in its own structure and function. Furthermore, local cortical NE-glutamate 667 

interactions spark “hot spots” of high excitation that promote processing of whatever is most 668 

salient at that moment (Mather et al., 2016).  669 

 670 

4.3 LC-NE system as a potential mechanism for facilitating these differential strategies 671 

The LC is a small pontine nucleus whose role is identifying and orienting attention to 672 

salient stimuli, which makes the LC an ideal candidate for mediating sex differences between 673 

gist and detail memory. It is possible that while men and women are attending to the same scene, 674 

LC signaling may inform a female system that detail-level stimuli are salient and should be 675 

attended to. This would be adaptive based on the aforementioned evolutionary pressures 676 

hypothesized to affect women more than men. In contrast, those pressures hypothesized to affect 677 

men more than women may make the male LC less likely to identify detail features as salient and 678 

worth encoding for later retrieval. The question then becomes, how the LC effects the neural 679 

milieu exerting such sex differences. 680 

 681 

4.3.1 Sex differences in the locus coeruleus 682 

Sex differences in the LC-NE system, particularly with respect to a higher prevalence of 683 

stress- and anxiety-related disorders in women, have been skillfully and extensively reviewed 684 

elsewhere (Bangasser et al., 2017; Bangasser and Valentino, 2012, 2015; Bangasser et al., 2016). 685 

Here, we briefly review evidence showing that male and female LC differ on various indices, 686 

including size/volume, morphology, and function. Given the small size and location of this 687 

nucleus, much of the structural and activational work is conducted in animals, unless otherwise 688 

indicated.  689 
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Sex differences in this midbrain pontine structure are documented to begin during 690 

adolescence, with males and females showing differences in LC volume and neuron number 691 

during puberty. Continued LC neurogenesis in females through puberty and discontinued 692 

neurogenesis in males at the onset of puberty drive these sex differences (Pinos et al., 2001). 693 

Evidence suggests that the onset of estradiol cyclicity in females is the catalyst for differences 694 

appearing at the onset of puberty. Disruption of estradiol production and concentration, even 695 

after puberty, has been shown to abolish the formation of larger LC volume and higher neuron 696 

count in females (De Blas et al., 1990). Further evidence for the driving role of estradiol leading 697 

to larger LC volume and neuron number in females is the androgenizing effect of testosterone 698 

propionate when administered to females on postnatal day 1. These females no longer differed 699 

from males and had smaller LC volume and neuron count than normal intact females, however, 700 

orchiectomy of males had no effect on LC volume or neuron number (Guillamón et al., 1988). 701 

Showing that testosterone resulted in smaller LC volume and lower neuron count in females, 702 

while loss of testosterone in males did not lead to changes in LC volume or neuron number, 703 

suggests that the observed effect in females was not a result of testosterone action on the female 704 

LC but rather disruption of the normal estradiol-induced organization and modulation of LC 705 

development resulting from the testosterone administration in early development.  706 

Others have shown that larger LC volume in females compared with males is driven by 707 

sex differences in the overall volume and number of NE neurons in the LC, particularly in the 708 

intermediate anterior regions of the LC in females (Luque et al., 1992). Interestingly, however, 709 

some evidence suggests that males do have a larger LC volume depending on the LC subregion 710 

of interest (Babstock et al., 1997). This study found that adult male Sprague-Dawley rats 711 

exhibited larger dorsal LC volume, a difference driven by a subregion of the dorsal LC that 712 
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heavily innervates the hippocampus (Babstock et al., 1997), which may have important 713 

implications for spatial abilities in males. 714 

Perhaps more importantly from a functional standpoint, adult females are reported to 715 

exhibit larger density of the dendritic field throughout the LC and peri-LC regions, including the 716 

core, ventromedial LC, and dorsolateral LC, likely resulting from females showing greater 717 

number of dendritic nodes and ends, dendritic length, and higher branch order (Bangasser et al., 718 

2011). The length of longest dendritic tree was also longer in females than in males. As would be 719 

expected with a greater number of dendrites, females also appear to have more synapses based 720 

on higher levels of synaptophysin in the core and dorsolateral LC (Bangasser et al., 2011).  721 

Another set of important functional findings show that the female LC is more responsive 722 

to stressful stimuli. For instance, females show a greater increase in tonic LC neuronal firing 723 

rates in response to hypotensive stress than males (Curtis et al., 2006). This larger neuronal 724 

response to the same stressor was driven by greater sensitivity of LC neurons to corticotropin-725 

releasing factor (CRF) in females, such that a lower dose of CRF resulted in a greater increase of 726 

tonic LC firing rates in females than in males (Curtis et al., 2006). The sex difference in CRF 727 

sensitivity appears at the level of receptor signaling. The CRF receptor involved in this process is 728 

a G-protein coupled receptor (Grammatopoulos et al., 2001; Hillhouse and Grammatopoulos, 729 

2006), which increases LC tonic firing rates via activation of a cAMP-dependent intracellular 730 

signaling cascade (Jedema and Grace, 2004). In contrast with unstressed males, the larger LC 731 

neuronal response to a low dose of CRF in females was found to be completely mediated by this 732 

cAMP-dependent cascade. However, when males were first exposed to a stressor, they exhibited 733 

a sensitized LC response, such that neurons responded to a lower dose of CRF. This sensitization 734 

of LC neurons in males was completely cAMP-dependent (Bangasser et al., 2010). This pattern 735 
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suggests that females experience a near maximal response in the LC to stressors that do not 736 

affect the male LC system. This increased sensitivity may have important implications for the 737 

LC even in the absence of stress. Recall that the LC plays an integral role in identifying and 738 

orienting to salient stimuli (Sara, 2009; Sara and Bouret, 2012). Thus, if the female system is 739 

more sensitive to stressors, it might be the case that the female system also identifies different 740 

stimuli as salient, which would result in encoding of different features of the same scene than 741 

males.  742 

 743 

4.3.2 Sex differences in the locus coeruleus and norepinephrine drive sex differences in 744 

emotional memory 745 

The LC shares bidirectional projections with the amygdala (Buffalari and Grace, 2007; 746 

Canteras et al., 1995; Cedarbaum and Aghajanian, 1978; Jones and Moore, 1977; Segal et al., 747 

1973; Wallace et al., 1992), and NE activation of the amygdala is necessary for successful 748 

encoding and consolidation of emotional memory (Hermans et al., 2014; Roozendaal and 749 

Hermans, 2017). For instance, in humans NE facilitates memory enhancement for the middle 750 

portion of the negative version of the three-phase story (Cahill et al., 1994), and NE must act 751 

centrally, not peripherally, to yield such memory enhancement effects (van Stegeren et al., 752 

1998). Given the sex differences that exist in the NE system and in emotional memory, it should 753 

not be surprising that there are sex differences in how NE influences emotional memory. 754 

 Following up on their work showing propranolol, a β-adrenoreceptor blocker, abolished 755 

enhancement for the middle phase of the negative version of the three-phase story (Cahill et al., 756 

1994; van Stegeren et al., 1998), Cahill and van Stegeren (2003) found that the effects of 757 

propranolol on gist and detail memory differed by sex. As reviewed previously, men typically 758 
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recall the gist, while women recall the details (depending on menstrual cycle phase and 759 

contraceptive status) of a scene. In line with the observed sex difference under control 760 

conditions, administration of propranolol prior to encoding diminished emotion-related 761 

enhancement of gist memory in men and detail memory in women (Cahill and van Stegeren, 762 

2003). This pattern suggests that LC-NE modulation of the amygdala not only plays a role in 763 

encoding emotional memories, but also plays a role in the sex differences observed for encoding 764 

of detail versus gist information in women and men, respectively.   765 

 766 

4.3.3 Sex differences in the locus coeruleus and dopamine may drive sex differences in spatial 767 

memory 768 

The LC and hippocampus are also highly interconnected. The LC innervates the 769 

hippocampus (Jones and Moore, 1977; Loughlin et al., 1986a; Loughlin et al., 1986b; Pasquier 770 

and Reinoso-Suarez, 1978; Segal and Landis, 1974; Segal et al., 1973) and receives afferents 771 

from the subiculum (Swanson and Cowan, 1977). In addition to sharing efferents and afferents, 772 

the LC-NE system contributes to spatial abilities (Lemon et al., 2009; Lemon and Manahan-773 

Vaughan, 2012; Nakao et al., 2002) via modulation of long-term plasticity within the 774 

hippocampus related to spatial memory formation (Hansen and Manahan-Vaughan, 2015a, b). 775 

Recent work suggests that the LC specifically modulates spatial learning and memory 776 

(Kempadoo et al., 2016), via dopaminergic innervation of the hippocampus (Kempadoo et al., 777 

2016; Kentros et al., 2004). While not the primary source of neural dopamine (DA), the LC is 778 

also involved in DA release throughout the brain (Devoto and Flore, 2006; Devoto et al., 2005; 779 

Grenhoff et al., 1993; Kempadoo et al., 2016; Lategan et al., 1990; Lemon and Manahan-780 

Vaughan, 2006), an effect that appears to be mediated by NE action. 781 
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Recent work demonstrated that LC modulates spatial memory via DA action (Kempadoo 782 

et al., 2016). This study found that while dopaminergic and noradrenergic neurons send 783 

projections to the CA1, of the two catecholamines, increasing dopaminergic tone to the dorsal 784 

hippocampus by stimulating LC dopamine release resulted in enhanced spatial performance 785 

across a battery of spatial tests, including a spatial object recognition test, the Barnes maze, and a 786 

conditioned place preference test, in animals that otherwise would not have learned. This effect 787 

occurred primarily through activation of the dopamine D1/D5 receptor complex (Kempadoo et 788 

al., 2016). Dopamine D1/D5 receptors are featured prominently on pyramidal neurons in the 789 

hippocampus and other cortical regions (Bergson et al., 1995), where they are important for 790 

long-term plasticity in the hippocampus (Hansen and Manahan-Vaughan, 2014) and for spatial 791 

learning (Granado et al., 2008). 792 

While little work has examined sex differences in LC projections to, or LC modulation of 793 

activity in, the hippocampus, extant data suggest that men receive greater LC input to the 794 

hippocampus than women. In animals, the dorsal region of the LC, which heavily innervates the 795 

hippocampus (Mason and Fibiger, 1979), is larger in males than females (Babstock et al., 1997). 796 

In humans, one resting-state fMRI study also suggests that fluctuations in LC activity are more 797 

tightly coupled with activity in the hippocampus and other medial temporal lobe regions in males 798 

than females (Zhang et al., 2016). This preferential LC modulation of the hippocampus in males 799 

may at least partially explain why males exhibit better performance on spatial tasks requiring 800 

orienting oneself or objects in space (Zhang et al., 2016). 801 

Unlike investigation of sex differences in LC-hippocampus interactions, there is ample 802 

evidence of sex differences in the DA system, although much of this research is confined to the 803 

domain of reward learning. Nonetheless, much of this research shows that males show 804 
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overproduction of DA receptors in the striatum until puberty and retain greater D1 receptor 805 

density in the nucleus accumbens (Andersen et al., 1997) and greater DA release in the striatum 806 

in response to amphetamine administration (Munro et al., 2006). On the other hand, females 807 

show greater DA clearance efficiency (Mozley et al., 2001), suggesting the male system 808 

maintains higher levels of DA. Given the importance of DA and the D1/D5 receptor complex in 809 

spatial learning and memory, this pattern of greater DA may speak to the aforementioned greater 810 

reliance on the hippocampus for spatial tasks in males compared to females who also recruit 811 

frontal regions during spatial tasks (Grön et al., 2000; Kolb and Cioe, 1996; Roof et al., 1993), 812 

as discussed in section 3.  813 

 814 

4.3.4 Can sex differences in the locus coeruleus and arousal speak to sex differences in global 815 

and local processing 816 

Recall that while there is a general effect of global precedence in perceptual processing, 817 

sex differences in global and local processing suggest that men show a tendency to perform 818 

better on global processing and women on local processing (Kimchi et al., 2009; Kramer et al., 819 

1996; Müller-Oehring et al.; Pletzer and Harris, 2017; Pletzer et al., 2013; Pletzer et al., 2014; 820 

Roalf et al., 2006; Scheuringer and Pletzer, 2016). Given the role of the LC/NE system to 821 

identify salient stimuli and reorient attention to those salient stimuli (for reviews see, Sara, 2009; 822 

Sara and Bouret, 2012), it would be expected that arousal would amplify this pattern of 823 

differences in men and women. However, limited work has examined the effects of arousal on 824 

global and local perceptual processing. This limited work in humans has examined how 825 

manipulating arousal levels via presentation of a tone might affect performance on these tasks, 826 

but do not account for sex (Weinbach and Henik, 2011, 2014). In these studies, flanker tasks 827 
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were modified to mimic Navon stimuli3 and auditory tones were played prior to congruent or 828 

incongruent trials. The measure of performance on these tasks was the “congruency effect” 829 

(mean reaction time for incongruent trials minus mean reaction time for congruent trials). In a 830 

version of the study where the salience of the local and global interfering information was 831 

manipulated, arousal increased attentional biases to whichever aspect of the stimuli was most 832 

salient in that context (Weinbach and Henik, 2014). Thus, these findings suggest that if there are 833 

sex differences in whether global vs. local stimuli are more salient, increased LC activation due 834 

to arousal should increase those sex differences.  835 

 836 

4.4 Overview 837 

As seen in sections 4.3.2 and 4.3.3, although structural differences in LC have been 838 

reported between males and females, LC structure alone cannot account for why women appear 839 

to encode more detail information and men appear to encode more gist information. However, 840 

given the known role of NE in re-orienting attention and in regulating vigilance (for reviews see, 841 

Sara, 2009; Sara and Bouret, 2012), LC modulation of the NE system and the sex differences 842 

indicating the female LC-NE system is more responsive to detail items within a scene or 843 

environment may account for this difference. Recall that the female LC is more sensitive to 844 

                                                 
3 The arrow-flanker task requires participants to indicate the direction of a central arrow in a line of arrows. The 

arrows can either be congruent (→ → → → →) or incongruent (→ → ← → →). In the modified version of the task 

used in the reviewed studies (Weinbach, 2011, 2014), the arrows were arranged similar to Navon task stimuli, 

where one large arrow was made out of smaller arrows. In this formation, congruent trials were where the large, 

global, arrow and smaller, local, arrows were facing the same direction, while incongruent trials were where the 

large, global, arrow was facing one direction and the smaller, local, arrows were facing the opposite direction. 
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stressors than the male LC (Bangasser et al., 2010; Curtis et al., 2006). This increased sensitivity 845 

has often been discussed in its relation to stress- and anxiety-related psychiatric disorders 846 

(Bangasser et al., 2017; Bangasser and Valentino, 2012, 2015). However, this increased 847 

sensitivity may not be limited to events commonly considered stressors.  In particular, 848 

evolutionary pressures resulting in differential encoding of detail and gist information between 849 

females and males could have capitalized on the widespread influence of the LC throughout the 850 

brain to instantiate such differences in other perceptual, cognitive, and neural domains. In doing 851 

so, the LC may promote different thresholds in females and males of determining that features of 852 

a scene are salient or behaviorally relevant, leading to a preferential encoding of details or local 853 

information in females and a preferential encoding of gist or global information in males. 854 

 855 

5. Future directions and limitations 856 

Importantly, this is just one possible account for how similarities in sex differences are 857 

observed across these three domains and there is still a great deal of research that must be done 858 

to test the veracity of this theoretical account. Behaviorally, these effects appear to be stable in 859 

emotional memory, but less so in spatial ability and perceptual processing. For instance, 860 

experiments linking gist versus detail memory and spatial ability, in particular preferring 861 

allocentric or egocentric navigation strategies, remain to be conducted. There is also a need to 862 

further explore whether and how increased arousal or direct norepinephrine manipulation affects 863 

performance on global-to-local processing tasks. The clearest experimental design to address this 864 

issue would involve manipulating LC activation independently from the stimuli used to examine 865 

attentional biases toward detail and gist information (for examples of this approach of 866 
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independently manipulating LC activation levels and stimuli salience see, Clewett et al., 2018; 867 

Lee et al., in press) 868 

Another challenge is to determine whether there are sex differences in which aspects of 869 

stimuli or scenes the LC tends to amplify processing of during baseline states (i.e., not under 870 

states of stress or arousal). Molecular and cellular studies examining neuronal LC response to 871 

stimuli typically focus on LC response to stressors, which lead to robust neuronal and 872 

neuromodulatory responses, however, our proposed model does not directly benefit from such 873 

paradigms. Our model proposes that under normal conditions the LC is differentially identifying 874 

whether detail-level items within a global scene are salient and worth encoding in males and 875 

females. Testing this would require electrophysiological studies which can measure how LC 876 

neurons are responding to different individual stimuli within a scene or environment. A similar 877 

model could be tested in humans using the constantly improving technology and imaging 878 

sequences for fMRI. LC responses could then be related to performance on memory tasks for 879 

global vs. local stimuli within a scene or environment.  880 

A final caveat is the proposed influence of evolutionary pressures on the development of 881 

these parallel sex differences across domains. Evolutionary theories are subject to criticism, in 882 

particular, the concept of spandrels (Gould and Lewontin, 1979) which discusses how theories 883 

centered on evolutionary psychology are in danger of ignoring alternative explanations. In this 884 

regard, evolutionary foundation for modern behaviors are at risk of missing alternative causes for 885 

said behaviors. As such, it is important to note that evolutionary pressures are not the only 886 

possible driving force for shaping and selecting the observed sex differences. One possibility for 887 

testing the potential influence of these evolutionary pressures would be to begin incorporating 888 

tasks which can decipher detail versus gist memory in anthropological studies focused on 889 



Sex differences in gist and detail across cognitive domains 41 

 

current-day hunter-gatherer societies. Alternatively, or additionally, pre-existing data from such 890 

hunter-gatherer studies (e.g., Reyes-García et al., 2016) might be reexamined to determine 891 

whether some tasks within the datasets may be able to speak to detail versus gist memory and 892 

whether performance on those tasks differ by sex. 893 

 894 

6. Conclusions 895 

Men and women differ on a range of indices related to perceptual processing, emotional 896 

memory, and spatial ability. In these tasks, women tend to show greater encoding of detail 897 

information, leading to better performance on recall tasks for peripheral information in an 898 

emotional scene and landmarks in a route. Men tend to show greater encoding of gist 899 

information, leading to better performance on recall tasks for central information in an emotional 900 

scene and allocentric navigation. In a related domain, men and women also show differences in 901 

perceptual processing of hierarchical stimuli, with men performing better for global targets and 902 

women performing better for local targets. Such differences in perceptual processing seem 903 

attractive for explaining sex differences in encoding and retrieval for emotional memory and 904 

spatial ability, however they do not account for why and how these low-level sex differences in 905 

perception occur. The failure of perceptual processing to account for sex differences suggests 906 

that the sex differences observed in perceptual processing are a byproduct of another effect, just 907 

as seems likely for emotional memory and spatial ability.  908 

Differing evolutionary pressures and LC innervation throughout the brain may help 909 

explain why and how these sex differences occur. Specifically, the greater sensitivity of the 910 

female LC-NE system may lead women to activate the LC-NE system in response to stimuli and 911 

goals that do not lead to increased activation in males. This non-stress level activation of the LC-912 
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NE system may lead to a greater level of vigilance in women when interacting with such stimuli 913 

and enhance encoding of detail information.  914 
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